Parler-TTS是一个轻量级文本转语音(TTS)模型,能够生成高质量、自然的语音,并且可以控制说话者的风格(性别、音调、说话方式等)。该项目是对Stability AI和爱丁堡大学研究论文《Natural language guidance of high-fidelity text-to-speech with synthetic annotations》的开源实现。
pip install git+https://github.com/huggingface/parler-tts.git
pip3 install --pre torch torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
import torch
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import soundfile as sf
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device)
tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
prompt = "Hey, how are you doing today?"
description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate)
该模型支持34个预定义说话者,包括:Laura, Gary, Jon, Lea, Karen, Rick, Brenda, David, Eileen, Jordan, Mike, Yann, Joy, James, Eric, Lauren, Rose, Will, Jason, Aaron, Naomie, Alisa, Patrick, Jerry, Tina, Jenna, Bill, Tom, Carol, Barbara, Rebecca, Anna, Bruce, Emily。
prompt = "Hey, how are you doing today?"
description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate)
accelerate launch ./training/run_parler_tts_training.py ./helpers/training_configs/starting_point_v1.json
项目提供了完整的训练和微调指南,包括:
项目包含多种性能优化:
项目采用宽松的开源许可证,鼓励社区贡献和商业使用。如果使用该项目,建议引用:
@misc{lacombe-etal-2024-parler-tts,
author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi},
title = {Parler-TTS},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/parler-tts}}
}
项目欢迎社区贡献,特别是在以下方面:
Parler TTS代表了开源TTS技术的重要进展,为研究者和开发者提供了强大而灵活的文本转语音解决方案。