TRL (Transformer Reinforcement Learning) é uma biblioteca de ponta desenvolvida pela HuggingFace, especializada no pós-treinamento de modelos de base usando tecnologias avançadas. A biblioteca foi projetada para o pós-treinamento de modelos de base, utilizando técnicas avançadas como ajuste fino supervisionado (SFT), otimização de política proximal (PPO) e otimização direta de preferências (DPO).
TRL oferece vários treinadores de fácil acesso:
Fornece uma interface CLI simples, permitindo o ajuste fino de modelos sem a necessidade de escrever código.
from trl import SFTTrainer
from datasets import load_dataset
dataset = load_dataset("trl-lib/Capybara", split="train")
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
)
trainer.train()
O algoritmo GRPO economiza mais memória do que o PPO e foi usado para treinar o modelo R1 da Deepseek AI:
from datasets import load_dataset
from trl import GRPOTrainer
dataset = load_dataset("trl-lib/tldr", split="train")
def reward_num_unique_chars(completions, **kwargs):
return [len(set(c)) for c in completions]
trainer = GRPOTrainer(
model="Qwen/Qwen2-0.5B-Instruct",
reward_funcs=reward_num_unique_chars,
train_dataset=dataset,
)
trainer.train()
DPO é um algoritmo popular que foi usado para pós-treinar modelos como o Llama 3:
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import DPOConfig, DPOTrainer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
trainer = DPOTrainer(
model=model,
args=training_args,
train_dataset=dataset,
processing_class=tokenizer
)
trainer.train()
from trl import RewardConfig, RewardTrainer
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
model = AutoModelForSequenceClassification.from_pretrained(
"Qwen/Qwen2.5-0.5B-Instruct", num_labels=1
)
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = RewardConfig(output_dir="Qwen2.5-0.5B-Reward")
trainer = RewardTrainer(
args=training_args,
model=model,
processing_class=tokenizer,
train_dataset=dataset,
)
trainer.train()
pip install trl
pip install git+https://github.com/huggingface/trl.git
git clone https://github.com/huggingface/trl.git
cd trl/
pip install -e .[dev]
trl sft --model_name_or_path Qwen/Qwen2.5-0.5B \
--dataset_name trl-lib/Capybara \
--output_dir Qwen2.5-0.5B-SFT
trl dpo --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--dataset_name argilla/Capybara-Preferences \
--output_dir Qwen2.5-0.5B-DPO
TRL é uma biblioteca poderosa e fácil de usar que fornece aos pesquisadores e desenvolvedores um conjunto de ferramentas completo para treinar e otimizar grandes modelos de linguagem. Ele combina as mais recentes técnicas de aprendizagem por reforço com as vantagens do ecossistema HuggingFace, tornando o treinamento de modelos de alta qualidade mais acessível e eficiente. Seja para pesquisa acadêmica ou aplicações industriais, TRL é a escolha ideal para o pós-treinamento de modelos Transformer.