LightRAG是一个"简单快速的检索增强生成"框架,由香港大学数据科学学院(HKUDS)开发。该项目旨在为开发者提供一套完整的RAG(Retrieval-Augmented Generation)解决方案,支持文档索引、知识图谱构建和智能问答功能。
LightRAG支持五种不同的检索模式,满足不同场景需求:
pip install "lightrag-hku[api]"
# 创建Python虚拟环境(如有必要)
# 以可编辑模式安装,包含API支持
pip install -e ".[api]"
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
from lightrag.kg.shared_storage import initialize_pipeline_status
from lightrag.utils import setup_logger
setup_logger("lightrag", level="INFO")
async def initialize_rag():
rag = LightRAG(
working_dir="your/path",
embedding_func=openai_embed,
llm_model_func=gpt_4o_mini_complete
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
def main():
rag = asyncio.run(initialize_rag())
rag.insert("Your text")
result = rag.query(
"What are the top themes in this story?",
param=QueryParam(mode="mix")
)
print(result)
if __name__ == "__main__":
main()
# Create conversation history
conversation_history = [
{"role": "user", "content": "What is the main character's attitude towards Christmas?"},
{"role": "assistant", "content": "At the beginning of the story, Ebenezer Scrooge has a very negative attitude towards Christmas..."},
{"role": "user", "content": "How does his attitude change?"}
]
# Create query parameters with conversation history
query_param = QueryParam(
mode="mix", # or any other mode: "local", "global", "hybrid"
conversation_history=conversation_history, # Add the conversation history
history_turns=3 # Number of recent conversation turns to consider
)
# Make a query that takes into account the conversation history
response = rag.query(
"What causes this change in his character?",
param=query_param
)
# Create new entity
entity = rag.create_entity("Google", {
"description": "Google is a multinational technology company specializing in internet-related services and products.",
"entity_type": "company"
})
# Create another entity
product = rag.create_entity("Gmail", {
"description": "Gmail is an email service developed by Google.",
"entity_type": "product"
})
# Create relation between entities
relation = rag.create_relation("Google", "Gmail", {
"description": "Google develops and operates Gmail.",
"keywords": "develops operates service",
"weight": 2.0
})
LightRAG Server提供了完整的Web界面,包括:
working_dir
: 工作目录路径embedding_func
: 嵌入函数llm_model_func
: 大语言模型函数vector_storage
: 向量存储类型graph_storage
: 图存储类型embedding_batch_size
: 嵌入批处理大小(默认32)embedding_func_max_async
: 最大并发嵌入进程数(默认16)llm_model_max_async
: 最大并发LLM进程数(默认4)enable_llm_cache
: 是否启用LLM缓存(默认True)支持多种格式的数据导出:
#Export data in CSV format
rag.export_data("graph_data.csv", file_format="csv")
# Export data in Excel sheet
rag.export_data("graph_data.xlsx", file_format="excel")
# Export data in markdown format
rag.export_data("graph_data.md", file_format="md")
# Export data in Text
rag.export_data("graph_data.txt", file_format="txt")
内置Token消耗监控工具:
from lightrag.utils import TokenTracker
# Create TokenTracker instance
token_tracker = TokenTracker()
# Method 1: Using context manager (Recommended)
# Suitable for scenarios requiring automatic token usage tracking
with token_tracker:
result1 = await llm_model_func("your question 1")
result2 = await llm_model_func("your question 2")
# Method 2: Manually adding token usage records
# Suitable for scenarios requiring more granular control over token statistics
token_tracker.reset()
rag.insert()
rag.query("your question 1", param=QueryParam(mode="naive"))
rag.query("your question 2", param=QueryParam(mode="mix"))
# Display total token usage (including insert and query operations)
print("Token usage:", token_tracker.get_usage())
LightRAG是一个功能全面、易于使用的RAG框架,特别适合需要构建智能问答系统和知识管理平台的场景。其灵活的架构设计和丰富的功能特性,使其成为RAG领域的优秀开源解决方案。